Chapter 6

Matrix elements

6.1 Matrix elements of spherical harmonics

The spherical harmonics Y,,,(0¢) were defined by Eq. (1.25) in terms of associated
Legendre polynomials, P"(cos @) of the first kind,

N\ 1/2
Vi (8) = (_1)m<w) P™(cos 6) exp(imep) } (6.1)

4r(l4+m)!
P™(cos ) = (sin H)mﬁﬂ (cosB)

P,(cos #) are the Legendre polynomials. The spherical harmonics satisfy the following
relations

Yi_m(0p) = (=1)"Y;(0)
Yim(m = 0p + 7) = (=1)Yim (00) } (6:2)

It is often more convenient to work with C! (8¢) which are defined by the relation

A7

mnmw%@) (6.3)

Cr(0p) =
We now turn our attention to matrix elements of the type
(' | Yo |lm) = / d0dip sin 0Y i Vg Yim (6.4)

Integrals such as Eq. (6.4) are called Gaunt’s coefficients and do often appear in atomic
physics, c.f. crystal field splitting in [(V) systems (note that we work within the Y},
basis). Wigner-Eckart theorem applied to Eq. (6.4) give for the Gaunt’s coefficients

<z'm'mq|Zm>=<—1>l’-m’( vk l)<r||m|z> (6.5

-m' g m

It should once again be stressed that thanks to the Wigner-Eckart theorem, the ge-
ometrical dependencies in Eq. (6.5) can be factored out and are controlled by the

39



40 CHAPTER 6. MATRIX ELEMENTS

3j-symbol. This indeed simplifies the computation of more difficult matrix elements.
To evaluate the reduced matrix element of Eq. (6.5) we note that

Yigllm) = > [I'm) (I'm! |V, |lm) (6.6)

'’
where we just have multiplied the right hand side with a “1”. Eq. (6.5) into Eq. (6.6)
and multiplying both sides with

" ko
%(-m' q m)

give us a nice looking expression

Z( "k l)quum>=

pree -m' ¢ m
! ! l” k l l, k l llfm’ '
l%mum(_m, R e It UL LR
By using Eq. (2.20), Eq. (6.7) simplifies to
l” k l "1 Ly "nn
2\ Yigltm) = ["m/) (=1)" =™ /(") ¥z |1) (6.8)
m' g m
qm

Multiply from the left with (7| (note that (n|lm) = Y},,(n)). The new expression is
true for any 6y, e.g. 6§ = 0 which gives using ¥, (0¢) = /[l]/(47)dmo and the fact
that m’ = ¢ +m (Eq. (2.23))

I = -0 o § g ) (6:9)

Note that we changed the variable name [ — I’. The Gaunt’s coefficient now become

i Vi) = om0, E (6 6 0) @)

-m'" g m

which is our final result. Eq. (6.2) together with Eq. (6.10) give the following nice
expression for the seemingly difficult integral

[ ViomTiamaVimasin 000 = it/ am) (3 & ) (22 2 Yiean)

m; Mg Mg

The reason for the definition of Cf in Eq. (6.3) becomes obvious through Egs. (6.9)
and (6.10) because

nlctim) =0 (6 o) (o b ) (6.12)

-m' g m

and
et = o' (g g o ) (6.13)

There exist efficient algorithms for the calculation of nj-symbols, and therefore inte-
grals such as those above can be handled very nicely.
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6.2 Matrix elements of tensorproducts

In Eq. (4.21) we defined the product of two tensor operators, XCSK) = (T(I(fl)U(§§2))22K),

and proved it transformed according to Eq. (4.16) under a rotation. We now shall in-
vestigate the matrix element of a tensor product. Applying the Wigner-Eckart theorem
and using the definition of a tensor product Eq. (4.21) we see

(T MXGT 1y T M) =
S TMITE Y T MY T MU |y M) (ke ko g ki by KQ) =

ql q2,yll JIIMII

Z (_1)JI_MI+JII_M”+]C1—k2+Q\/ﬁ X

ql q2,yll JIIMII

J ok J J" ke J ki ke K y
_MI C]l MII _MII q2 M Q1 q2 _Q
AT ") (" U ) (6:14)

where we “as usual” have inserted the “1”. Wigner-Eckart theorem on the left hand
side of Eq. (6.14) gives

1ot JI K J
X = (6 TNl )

The obvious problem to solve is to get an expression for the reduced matrix element
on the right hand side of Eq. (6.15). Multiply Eq. (6.15) with

J K J
! 6.16
M%Q( -M'Q M ) ( )

and use the relation Eq. (2.20), c.f. Egs. (6.7) and (6.8), we arrive at

<7’J’||X(K)||7J> — Z (_1)J”—M”+k1—k2+Qm< —{\/[’ g ]{4 >

ql q2 QMMI,-)/H JII

y J ok J J' ke J ki ke K
-M" g M" -M" g M a @ —Q
X T[Ty T ") " T U S ) (6.17)

Massaging Eq. (6.17) and the definition of 6j-symbols in term of 3j-symbols, Eq.
(2.42), finally give us

, ki ke K
(XS ) =K 3 e i
Y

IIJII
o T TE0 ) (" U9 .7 (6.18)
The above expression is valid weather 7% and U*2) act on the same system or not.

It often occurs that the two tensor operators act on different systems, c.f. the elec-
trostatic interaction between two electrons where 1/r15 o CYC) . C’ék), or the spin-orbit
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interaction s-I. We therefore want to express Eq. (6.18) in terms of the reduced matrix
11

elements for the decoupled systems (71 |[T®*V||4"5,) and (y"5||[U*2)||vj,) if Uk2) act

on the 2-system and T1) on the 1-system. We start with (’yjleJ’M'\Xé?K)hjleJM)
and change representation to m;my and m|m/, plus use Eq. (4.21) (definition of the
two tensor operator product)

<7jijéJ,M,|XézK)|7j1j2JM> = Z <j1]2J,MI|J1J2m1m2> X

mimymimaqiq2

<j1j2m1m2‘j1j2JM></€1k2Q1Q2V€1/€2KQ> X
(V71 4y m | T U [y jujarmams) (6.19)

Using

n -1 -n -1 - _
Z |7 ]1]2m1m2 <’Y JiJom 1m2| 1
,y ]”]”m”mg

and the definition of 3j-symbols Eq. (2.16), Eq. (6.19) then takes the form (the sum

" 1
is over mmymimaq1g2y" ji j3mims)

<’y]1]2J,M,|X(K IYjrja M) = Z(_1)3’1—jé+M’+j1—j2+M+k1—k2+Q [J[J][K] %

J1 o Ja J' 72 J ki ky K %
my mby —M my my —M an @ —Q
<7,]1]ém1m,2 |Tq(1kl) "Y”]i,.?gml my > <’Y".71,ng1 m2 |U(;€2) |Yj142mames) (6.20)

Up to now we have not assumed anything concerning which system the tensor operator
acts on. If for example T ) acts on the 1-system and U{*?) act on the 2-system, the
matrix elements on the right hand side of Eq. (6.20) reduce to

(Vi | Ty |y 310 ) 8 Oy (6.21)
<'7ngm2 ‘U 52 |7.72m2>53”]1 5m’1’m1

Wigner-Eckart on both sides of Eq. (6.20) and using the assumption Eq. (6.21) we
get for the reduced matrix element (v'j}5.J'|| X )| j2J) after having multiplied by

5 ( J K J)
VTG _MI Q M )

and used the orthogonality relation for 3j-symbols, c.f. Eqgs. (6.15) and (6.17), and
the definition of 9j-symbols in terms of 3j-symbols Eq. (2.69),

<7Ijij§=]'”X(K)H’Yj1j2J> =
Jog kK

[(TTINK]S 35 g2 ke p D (YAl T® 1y 50) (v 35| U |[v5s) (6.22)
J J K |
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remembering

(3150 M| XG yjrjad M) =

07 i) B IX i) (6.23)
From Eq. (2.71) we know that a 9j-symbol reduce essentially to a 6j-symbol when

one of its arguments is zero. Thus, Eq. (6.23) for a scalar product (S) becomes, c.f.
Egs. (4.23) and (4.24), using Eq. (4.21),

S = (T®.Uu®) = S (~1)TPU® = (—1)%/Ik)x" (6.24)
q
(V' j14od M'|S|yj1j2 T M) =

1 J 0 J PP .
o (e M><73132J||5||W1J2J):

ok
6MIM5JIJ [J] 1/2 \/ \/ [JI { ]2 j2 k } X

S ATy ) 5 [UP72) =
,),II

Sppr b g (—1)7 475+ {]-1 I J}Z(’Y’JHIT"“)IIV"h)(v”Jé\IU(’“’Hm) (6.25)

J2 J2 A1

This result corresponds to Eq. (38) in Racahs classic paper II [3]. Racah continued to
massage matrix elements of the types discussed so far, and we will do the same.

We first recall that an odd permutation of rows/columns change sign on the 9j-
symbol if }°; J; =odd. Therefore

jioa k . ik
jo 2 0 =(—1)J1+””+’“([k][jz])‘m{Jl 7 } (6:29
J J k 2
Next note that
. . s s 0 :
(a1 |7da) = 6155, (=1)72 ™2/ [ T2 2 ) =\ /lja) (6.27)
mo 0 mo

according to Eq. (2.70). Eq. (6.22) now give using Eqgs. (6.26), (6.27), k, = 0 and
U =1 (U acting on system 2)

(7’j{J£J'HT vz d) =

ok ' .
i (~ 1) UN”{]} 7 }mluT“)\ma (6.28)
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and for k; = 0 and Tl(k) =1
5 |lUP gz ) =

. . ’ -/ N k ] .
§jpjy (1) ot [J][J']{jj JJQI i }(7’j§||U(k)||Wz) (6.29)

The last two equations correspond to Racahs Eqgs. (44a) and (44b) in II. The usefulness
of these types of matrix elements become obvious when working on “real” problems.



